
3.3 Cubic Spline Interpolation 107

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

w=c(i+1)-d(i)
h=xa(i+m)-x h will never be zero, since this was tested in the ini-

tializing loop.t=(xa(i)-x)*d(i)/h
dd=t-c(i+1)
if(dd.eq.0.)pause ’failure in ratint’

This error condition indicates that the interpolating function has a pole at the re-
quested value of x.

dd=w/dd
d(i)=c(i+1)*dd
c(i)=t*dd

enddo 12

if (2*ns.lt.n-m)then
dy=c(ns+1)

else
dy=d(ns)
ns=ns-1

endif
y=y+dy

enddo 13

return
END

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§2.2. [1]

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall), §6.2.

Cuyt, A., and Wuytack, L. 1987, Nonlinear Methods in Numerical Analysis (Amsterdam: North-
Holland), Chapter 3.

3.3 Cubic Spline Interpolation

Given a tabulated function yi = y(xi), i = 1...N , focus attention on one
particular interval, between xj and xj+1. Linear interpolation in that interval gives
the interpolation formula

y = Ayj + Byj+1 (3.3.1)
where

A ≡ xj+1 − x

xj+1 − xj
B ≡ 1 − A =

x − xj

xj+1 − xj
(3.3.2)

Equations (3.3.1) and (3.3.2) are a special case of the general Lagrange interpolation
formula (3.1.1).

Since it is (piecewise) linear, equation (3.3.1) has zero second derivative in
the interior of each interval, and an undefined, or infinite, second derivative at the
abscissas xj . The goal of cubic spline interpolation is to get an interpolation formula
that is smooth in the first derivative, and continuous in the second derivative, both
within an interval and at its boundaries.

Suppose, contrary to fact, that in addition to the tabulated values of y i, we
also have tabulated values for the function’s second derivatives, y ′′, that is, a set

108 Chapter 3. Interpolation and Extrapolation

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

of numbers y ′′
i . Then, within each interval, we can add to the right-hand side of

equation (3.3.1) a cubic polynomial whose second derivative varies linearly from a
value y′′

j on the left to a value y ′′
j+1 on the right. Doing so, we will have the desired

continuous second derivative. If we also construct the cubic polynomial to have
zero values at xj and xj+1, then adding it in will not spoil the agreement with the
tabulated functional values yj and yj+1 at the endpoints xj and xj+1.

A little side calculation shows that there is only one way to arrange this
construction, namely replacing (3.3.1) by

y = Ayj + Byj+1 + Cy′′
j + Dy′′

j+1 (3.3.3)

where A and B are defined in (3.3.2) and

C ≡ 1
6
(A3 − A)(xj+1 − xj)2 D ≡ 1

6
(B3 − B)(xj+1 − xj)2 (3.3.4)

Notice that the dependence on the independent variable x in equations (3.3.3) and
(3.3.4) is entirely through the linear x-dependence of A and B, and (through A and
B) the cubic x-dependence of C and D.

We can readily check that y ′′ is in fact the second derivative of the new
interpolating polynomial. We take derivatives of equation (3.3.3) with respect to x,
using the definitions of A, B, C, D to compute dA/dx, dB/dx, dC/dx, and dD/dx.
The result is

dy

dx
=

yj+1 − yj

xj+1 − xj
− 3A2 − 1

6
(xj+1 − xj)y′′

j +
3B2 − 1

6
(xj+1 − xj)y′′

j+1 (3.3.5)

for the first derivative, and

d2y

dx2
= Ay′′

j + By′′
j+1 (3.3.6)

for the second derivative. Since A = 1 at xj , A = 0 at xj+1, while B is just the
other way around, (3.3.6) shows that y ′′ is just the tabulated second derivative, and
also that the second derivative will be continuous across (e.g.) the boundary between
the two intervals (xj−1, xj) and (xj , xj+1).

The only problem now is that we supposed the y ′′
i ’s to be known, when, actually,

they are not. However, we have not yet required that the first derivative, computed
from equation (3.3.5), be continuous across the boundary between two intervals. The
key idea of a cubic spline is to require this continuity and to use it to get equations
for the second derivatives y ′′

i .
The required equations are obtained by setting equation (3.3.5) evaluated for

x = xj in the interval (xj−1, xj) equal to the same equation evaluated for x = xj but
in the interval (xj , xj+1). With some rearrangement, this gives (for j = 2, . . . , N−1)

xj − xj−1

6
y′′

j−1 +
xj+1 − xj−1

3
y′′

j +
xj+1 − xj

6
y′′

j+1 =
yj+1 − yj

xj+1 − xj
− yj − yj−1

xj − xj−1

(3.3.7)

These are N − 2 linear equations in the N unknowns y ′′
i , i = 1, . . . , N . Therefore

there is a two-parameter family of possible solutions.
For a unique solution, we need to specify two further conditions, typically taken

as boundary conditions at x1 and xN . The most common ways of doing this are either

3.3 Cubic Spline Interpolation 109

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

• set one or both of y ′′
1 and y′′

N equal to zero, giving the so-called natural
cubic spline, which has zero second derivative on one or both of its
boundaries, or

• set either of y′′
1 and y′′

N to values calculated from equation (3.3.5) so as
to make the first derivative of the interpolating function have a specified
value on either or both boundaries.

One reason that cubic splines are especially practical is that the set of equations
(3.3.7), along with the two additional boundary conditions, are not only linear, but
also tridiagonal. Each y ′′

j is coupled only to its nearest neighbors at j±1. Therefore,
the equations can be solved in O(N) operations by the tridiagonal algorithm (§2.4).
That algorithm is concise enough to build right into the spline calculational routine.
This makes the routine not completely transparent as an implementation of (3.3.7),
so we encourage you to study it carefully, comparing with tridag (§2.4).

SUBROUTINE spline(x,y,n,yp1,ypn,y2)
INTEGER n,NMAX
REAL yp1,ypn,x(n),y(n),y2(n)
PARAMETER (NMAX=500)

Given arrays x(1:n) and y(1:n) containing a tabulated function, i.e., yi = f(xi), with
x1 < x2 < . . . < xN , and given values yp1 and ypn for the first derivative of the inter-
polating function at points 1 and n, respectively, this routine returns an array y2(1:n) of
length n which contains the second derivatives of the interpolating function at the tabulated
points xi. If yp1 and/or ypn are equal to 1 × 1030 or larger, the routine is signaled to set
the corresponding boundary condition for a natural spline, with zero second derivative on
that boundary.
Parameter: NMAX is the largest anticipated value of n.

INTEGER i,k
REAL p,qn,sig,un,u(NMAX)
if (yp1.gt..99e30) then The lower boundary condition is set either to be

“natural”y2(1)=0.
u(1)=0.

else or else to have a specified first derivative.
y2(1)=-0.5
u(1)=(3./(x(2)-x(1)))*((y(2)-y(1))/(x(2)-x(1))-yp1)

endif
do 11 i=2,n-1 This is the decomposition loop of the tridiagonal

algorithm. y2 and u are used for temporary
storage of the decomposed factors.

sig=(x(i)-x(i-1))/(x(i+1)-x(i-1))
p=sig*y2(i-1)+2.
y2(i)=(sig-1.)/p
u(i)=(6.*((y(i+1)-y(i))/(x(i+1)-x(i))-(y(i)-y(i-1))

* /(x(i)-x(i-1)))/(x(i+1)-x(i-1))-sig*u(i-1))/p
enddo 11

if (ypn.gt..99e30) then The upper boundary condition is set either to be
“natural”qn=0.

un=0.
else or else to have a specified first derivative.

qn=0.5
un=(3./(x(n)-x(n-1)))*(ypn-(y(n)-y(n-1))/(x(n)-x(n-1)))

endif
y2(n)=(un-qn*u(n-1))/(qn*y2(n-1)+1.)
do 12 k=n-1,1,-1 This is the backsubstitution loop of the tridiago-

nal algorithm.y2(k)=y2(k)*y2(k+1)+u(k)
enddo 12

return
END

It is important to understand that the program spline is called only once to
process an entire tabulated function in arrays x i and yi. Once this has been done,

110 Chapter 3. Interpolation and Extrapolation

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

values of the interpolated function for any value of x are obtained by calls (as many
as desired) to a separate routine splint (for “spline interpolation”):

SUBROUTINE splint(xa,ya,y2a,n,x,y)
INTEGER n
REAL x,y,xa(n),y2a(n),ya(n)

Given the arrays xa(1:n) and ya(1:n) of length n, which tabulate a function (with the
xai’s in order), and given the array y2a(1:n), which is the output from spline above,
and given a value of x, this routine returns a cubic-spline interpolated value y.

INTEGER k,khi,klo
REAL a,b,h
klo=1 We will find the right place in the table by means of bisection.

This is optimal if sequential calls to this routine are at random
values of x. If sequential calls are in order, and closely
spaced, one would do better to store previous values of
klo and khi and test if they remain appropriate on the
next call.

khi=n
1 if (khi-klo.gt.1) then

k=(khi+klo)/2
if(xa(k).gt.x)then

khi=k
else

klo=k
endif

goto 1
endif klo and khi now bracket the input value of x.
h=xa(khi)-xa(klo)
if (h.eq.0.) pause ’bad xa input in splint’ The xa’s must be distinct.
a=(xa(khi)-x)/h Cubic spline polynomial is now evaluated.
b=(x-xa(klo))/h
y=a*ya(klo)+b*ya(khi)+

* ((a**3-a)*y2a(klo)+(b**3-b)*y2a(khi))*(h**2)/6.
return
END

CITED REFERENCES AND FURTHER READING:

De Boor, C. 1978, A Practical Guide to Splines (New York: Springer-Verlag).

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), §§4.4–4.5.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§2.4.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §3.8.

3.4 How to Search an Ordered Table

Suppose that you have decided to use some particular interpolation scheme,
such as fourth-order polynomial interpolation, to compute a function f(x) from a
set of tabulated xi’s and fi’s. Then you will need a fast way of finding your place
in the table of xi’s, given some particular value x at which the function evaluation
is desired. This problem is not properly one of numerical analysis, but it occurs so
often in practice that it would be negligent of us to ignore it.

Formally, the problem is this: Given an array of abscissas xx(j), j=1, 2, . . . ,n,
with the elements either monotonically increasing or monotonically decreasing, and
given a number x, find an integer j such that x lies between xx(j) and xx(j+1). For

